100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin.
نویسندگان
چکیده
Anabaena Sensory Rhodopsin (ASR) stands out among the microbial retinal proteins in that, under light-adaptation (LA) conditions, it binds both the 13-cis isomer and the all-trans isomer of the protonated Schiff base of retinal (PSBR). In the dark-adapted (DA) state, more than 95% of the proteins bear all-trans PSBR, and the protein environment adopts a different equilibrium state. We report the excited state and photo-isomerization kinetics of ASR under different LA conditions. The full data set allows confirming that the photoisomerization of the 13C isomer occurs within 100 fs and indications of an excited and ground state wavepacket launched by the ultrafast non-adiabatic reaction are reported. Even though this recalls the record isomerization time and the coherent reaction scenario of 11-cis PSBR in rhodopsin, the photoisomerization quantum yield (QY) is much lower, actually the lowest value ever reported for retinal proteins (<15%). Noticeably, in ASR the excited state lifetime (ESL) is at least five times larger and the QY is more than twice as large for AT PSBR as compared to 13C PSBR. We argue that ESL and QY cannot be expected to be correlated at all, but that the latter is decided on, as often anticipated, by the wavepacket pathways leading to the conical intersection seam.
منابع مشابه
Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch.
Femtosecond fluorescence up-conversion, UV-Vis and IR transient absorption spectroscopy are used to study the photo-isomerization dynamics of a new type of zwitterionic photoswitch based on a N-alkylated indanylidene pyrroline Schiff base framework (ZW-NAIP). The system is biomimetic, as it mimics the photophysics of retinal, in coupling excited state charge translocation and isomerization. Whi...
متن کاملCoherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitchw
Femtosecond fluorescence up-conversion, UV-Vis and IR transient absorption spectroscopy are used to study the photo-isomerization dynamics of a new type of zwitterionic photoswitch based on a N-alkylated indanylidene pyrroline Schiff base framework (ZW-NAIP). The system is biomimetic, as it mimics the photophysics of retinal, in coupling excited state charge translocation and isomerization. Whi...
متن کاملPhotoreactions and Structural Changes of Anabaena Sensory Rhodopsin
Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer) which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. This article reviews the detailed photoreaction processes of ASR, which were studied by low-temperature Fourier-tr...
متن کاملEvidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments.
We apply spectrally-resolved pump degenerate four-wave-mixing for the characterization of excited state low-frequency vibrational coherences during the initial events in excited state double-bond isomerization of retinal protonated Schiff-bases. A set of low-frequency coherences in the energetic range of 100-350 cm(-1) appears in the dynamics already for very early delays after initial excitati...
متن کاملAnabaena sensory rhodopsin is a light-driven unidirectional rotor.
The implementation of multiconfigurational quantum chemistry methods into a quantum-mechanics/molecular-mechanics protocol has allowed the construction of a realistic computer model for the sensory rhodopsin of the cyanobacterium Anabaena PCC 7120. The model, which reproduces the absorption spectra of both the all-trans and 13-cis forms of the protein and their associated K and L intermediates,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 38 شماره
صفحات -
تاریخ انتشار 2015